Article

Monitoring Sustainable Development: Climate and Energy Policy Indicators

Claudia Kettner ^{1,*}, Daniela Kletzan-Slamanig ¹, Angela Köppl ¹, Beate Littig ², Irina Zielinska ²

- ¹ Austrian Institute of Economic Research (WIFO), Arsenal Objekt 20, 1030 Vienna, Austria
- ² Institute for Advanced Studies (IHS), Josefstädter Str. 39, 1080 Vienna, Austria
- Correspondence: Claudia Kettner, Email: claudia.kettner@wifo.at; Tel.: +43-1-798-2601-406.

ABSTRACT

Both the UN SDGs and the Paris Agreement imply ambitious long-term targets that can only be met through a fundamental restructuring of economic and social systems. We propose a set of energy and climate policy indicators that allow informed policymaking and go beyond the UN indicator set. The indicators cover the whole energy system as well as the three dimensions of sustainable development. Our approach combines an energy service centered perspective with research on energy and climate indicators, and it embeds the indicator framework in the broader socio-ecologic context. We compile a set of 109 high-level energy indicators for four key sectors of energy demand (households, transport, industry and manufacturing) that can be further disaggregated to 334 indicators. For electricity and heat supply we assemble a set of 21 indicators that can be disaggregated to 54 indicators, differentiating by energy source and plant type. Interactions, i.e., synergies and conflicts, between the different target dimensions and the corresponding indicators need to be carefully considered. The main aim of the comprehensive indicator set is to help policymakers define measurable goals and strategies in the field of energy and climate policy, as well as to provide a tool for policy monitoring, evaluation and revision. The challenge in using indicator systems for policy analysis is that they have to consider a multitude of aspects in order to reflect the complexity of the issues analyzed and at the same time have to deliver concise information on various trends.

Given Access

Received: 17 February 2020 Accepted: 23 May 2020 Published: 28 May 2020

Copyright © 2020 by the author(s). Licensee Hapres, London, United Kingdom. This is an open access article distributed under the terms and conditions of <u>Creative Commons Attribution</u> <u>4.0 International License</u>. **KEYWORDS:** sustainable development; indicator systems; energy policy; climate policy

INTRODUCTION

2015 was marked by two important outcomes of international negotiations: the agreement on the UN Sustainable Development Goals (SDGs) and the Paris Climate Agreement. Both imply ambitious (long-term)

targets that can only be met with a fundamental restructuring of economic and social systems. The greenhouse gas (GHG) emission reductions—required to limit climate change to well below 2 °C or even 1.5 °C above pre-industrial levels, as stated in the Paris Climate Agreement—call for a fundamental decarbonization. A substantial contribution needs to come from the energy system because energy-related emissions account for the largest share in total GHG emissions, e.g., 78% for the EU total [1].

For both the Paris Agreement and the SDGs, research is needed because the scope of the required changes calls for new measurement and monitoring approaches. This comprises work on governance structures, pathway analyses, as well as suitable indicator sets that comprehensively capture the socio-economic and environmental aspects and allow depicting synergies and trade-offs between the dimensions of sustainable development as well as between targets [2,3]. Therefore, indicator sets that provide more detailed information than the set of targets and indicators proposed by the UN are called for. In this paper, we propose a novel Climate and Energy Policy (ClEP) indicator system for the EU Member States that allows for informed policymaking. Compared to those approaches which mainly focus on progress based on the UN indicator set [4], our indicator system contains more disaggregated information with a focus on energy and climate policy. The proposed sustainable energy indicators cover the entire energy system as well as the three dimensions of sustainable development. The approach combines an energy service centered perspective with research on energy and climate indicators, and it embeds the indicator framework in a broader socio-ecologic context. The main aim of the comprehensive indicator set is to help policymakers define measurable goals and strategies in the field of energy and climate policy and to provide a tool for policy monitoring, evaluation and revision. For the EU Member States, relevant data so far are mainly available at the national level. Therefore, the relevant target group is national energy and climate policymakers, allowing them to conduct performance comparisons and to identify successful solutions. Moreover, some of the indicators could complement the existing energy and climate policy indicators at the EU level. One key advantage of our indicator system is its ability to facilitate public debate on trade-offs between different targets, thereby providing a basis for informed decision-making.

For a series of issues, in particular pertaining to the social dimension of sustainable energy development, at present no data are available and therefore have to be omitted from the analysis. The closing of the gap has to be spurred by policymakers (in providing the legal basis for data collection) and statistical offices in actual data collection and processing. This would help identify interlinkages and trade-offs between the dimensions of sustainable development as well as between different sectors. The paper is structured as follows: The second section provides the broader context, embedding the climate and energy policy indicators into the socio-ecological framework defined by the UN Sustainable Development Goals. In the third section the conceptual approach of the ClEP indicator framework is presented. The fourth section discusses interactions between the target dimensions and indicators. The final section concludes.

CLIMATE AND ENERGY POLICY INDICATORS IN THE CONTEXT OF THE UN SDGS

The manifold interactions between the 17 SDGs and different sub-targets constitute a broad research area [2,5–10]. The assessment of interlinkages is of high relevance because ignoring synergies or trade-offs creates a risk of unintended outcomes. This applies to the entirety of the SGDs but also to the set of energy and climate policy indicators described below. Figure 1 illustrates which thematic areas of SDGs 7 and 13 we identified as being strongly or directly linked to eleven other goals and which interactions between these objectives must be considered to achieve the targets and design adequate monitoring approaches. For instance, policies aimed at reducing energy expenditures of poor households (thus contributing to improvements in the social dimension/SDG 10) might increase energy demand and in turn emissions (with negative effects on the environmental dimension/SDG 13), if not properly designed.

Figure 1. Interaction of the SDGs "Climate Action" and "Affordable and Clean Energy" with other SDGs; authors' own illustration.

The indicator set is embedded in the broader socio-ecological framework defined by the UN SDGs but specifically focuses on two goals: "Affordable and clean energy" (SDG 7) and "Climate Action" (SDG 13). It consists of operational indicators putting energy services at the center

because energy services generate welfare instead of energy flows [11–17]. The indicator set starts with energy services in four demand-side sectors—residential buildings, transport, manufacturing and services—which are complemented by consistent indicators for sustainable electricity and heat supply.

Figure 2A presents a conceptual illustration for a better understanding of the interlinkages between the SDGs. We use a "doughnut" representation similar to other research concerned with the SDGs [18], in which the socio-ecological framework is partitioned into three layers—wellbeing, governance and planetary boundaries [2], and to which the SDGs are assigned in the context of our research. This combination of the concept of wellbeing and the concept of planetary boundaries creates a space in which sustainable development can be achieved, i.e., social goals are met while at the same time the integrity of ecosystems is preserved so that they can provide the services on which our societies depend. In this visualization we attribute ten SDGs to the layer of wellbeing (inner layer). The second layer of governance structures constitutes the supporting framework for wellbeing and comprises three SDGs. The third layer comprises the planetary boundaries, i.e., the biophysical base and natural limits for all human activities.

As emphasized in TWI2050 [19], the starting point for any clustering of SDGs must be the definition of the research question for which it is of relevance. There is no "absolute" categorization of the SDGs because they do not comprise a specific model, but TWI2050 [19] concluded that "(i) the SDGs are universal, holistic and interdependent and thereby indivisible, and (ii) any clustering method is context specific, being dependent on the question being addressed, modelling approach, or regional context."

To develop this representation or clustering of SDGs we focused on human wellbeing and those goals that directly affect living conditions and quality of life. Our energy system approach [14] can then be integrated into this perspective (Figure 2(B)). This allows considering in more detail to what extent energy services, i.e., the use derived from "consuming" energy, are crucial for all aspects of economic and social development. A given level of energy services can be provided by different combinations of technologies (stocks) and energy flows. The range of available technologies and energy sources thus opens up a spectrum of options entailing different environmental impacts for any given energy service level. The energy efficiency of the capital stock (i.e., both of conversion technologies and application technologies/passive systems) is one key determinant of energy flows and the corresponding greenhouse gas emissions associated with a certain level of energy services [11,14,15]. In contrast to the welfare-inducing energy services, the physical aspects of energy (flows) and related greenhouse gas emissions are part of the "planetary boundaries".

(A) Embedding the SDGs into the broader socio-ecological context

Figure 2. Socio-ecological context; authors' own illustration.

(B) Embedding the ClEP indicator approach into the broader socio-ecological context

Thus, the detailed indicator set describes or quantifies the areas of energy and climate, on the one hand, but emphasizes the relevance of these areas for people's wellbeing, on the other. And while the interlinkages between energy and climate are at the center of our analysis, interlinkages with other SDGs, although highly relevant (see also Figure 1), are beyond the scope of this research.

THE CLEP INDICATOR FRAMEWORK

Literature Overview

The multidimensionality of sustainable development entails a high degree of complexity. Sets of indicators—such as those developed, for instance, by the EU and the UN [20–24]—are considered to be appropriate tools with which to reduce this complexity and to illustrate the interactions between society and ecosystems.

The adoption of the SDGs and the publication of the corresponding indicator framework have stimulated the latest wave of developing comprehensive indicator frameworks. The SDGs of the 2030 Agenda for Sustainable Development are the continuation of the Millennium Development Goals [23] and were adopted by 156 states in 2015 after an extensive planning and consultation process. In the SDGs, the overarching aims of ending all forms of poverty, protecting the planet and ensuring prosperity for everyone are broken down into 17 goals and 169 detailed targets. In contrast to the Millennium Development Goals, the SDGs refer not only to developing countries but to all signatories.

For the monitoring of the SDGs and the respective sub-targets, an indicator system comprising 244 indicators (or respectively 233 indicators, with some occurring more than once in the system) was developed, some of which are used to monitor more than one target [22]. In general, the goals/targets and the respective indicators are based on the three dimensions of sustainable development and can be divided into the five pillars of the Agenda 2030 (the five "Ps"—people, planet, prosperity, peace, partnership).

In the EU, the UN SDG framework has been implemented by Eurostat as well as at the Member State level, with national indicator frameworks differing from the Eurostat system. In the following, the indicators for SDGs 7 and 13 proposed by the UN are compared with the indicators put forward by Eurostat, and the indicators developed for Austria as an example of a national indicator framework. A different approach is applied by the Sustainable Development Solutions Network (SDSN) and the Bertelsmann Stiftung, who provide a composite SDG Index and dashboards describing countries' progress towards achieving the SDGs [25]. The 2018 SDG Index includes 88 global indicators and 111 indicators for the Dashboard for 156 OECD countries. Thirty-nine of these indicators match UN indicators exactly, 28 are closely aligned, and 44 are not included in the UN framework. Eurostat has developed its own indicator set that puts emphasis on interlinkages between targets by defining so-called multi-purpose indicators (monitoring more than one target). The Eurostat framework consists of 100 indicators, with a maximum of 6 indicators being assigned to each SDG.

For Austria, the national statistical office, Statistics Austria, implemented an indicator framework closely related to the UN indicators [26]. For almost half of the proposed UN indicators, national data are currently available from Statistics Austria or from other data sources. Forty-five indicators that are not relevant to Austria (e.g., indicators related to marine life or targeted at developing countries) have been omitted. For another 19% of the proposed UN indicators no data for Austria are available. However, the national statistical office has added additional indicators that are of particular relevance from an Austrian perspective (headline indicators from the national wellbeing measurement initiative "Wie geht's Österreich").

Table 1 lists the indicators used for monitoring SDG 7 "Affordable and clean energy" and SDG 13 "Climate Action" developed by the UN, Statistics Austria and Eurostat, along with the sub-targets. The indicators by the UN and Statistics Austria largely correspond to the ten sub-targets. For SDG 7, these include providing access to affordable, reliable and modern energy services for all, substantially increasing the share of renewable energy and accelerating energy efficiency improvements, along with assistance for lower-income countries. While Statistics Austria has not adopted the indicators "7.1.1 Proportion of population with access to electricity" and "7.1.2 Proportion of population with primary reliance on clean fuels and technology" because these targets have already been achieved in Austria, final energy consumption has been included as an additional indicator. The six Eurostat indicators include information on energy poverty, final energy consumption, energy dependence, energy productivity and GHG emissions intensity of energy consumption as a multi-purpose indicator.

For SDG 13, the UN indicators focus mostly on a policy/finance dimension and cover both climate change mitigation and adaptation. Most indicators have a global dimension, e.g., "13.3.2 Number of countries that have communicated the strengthening of institutional, systemic and individual capacity-building to implement adaptation, mitigation and technology transfer, and development actions". Statistics Austria has omitted most of these global targets and adapted some of them to the national context. In addition, it included GHG emissions as an indicator. The Eurostat indicators, in contrast, focus on GHG emissions and the impacts of climate change. Moreover, Eurostat stresses the nexus between emissions and energy use by including final energy consumption and the share of renewables as multi-purpose indicators.

Table 1. Indicators used by statistical offices for Monitoring SDGs 7 and 13.

	Indicators				
Goal/Target	UN	Statistics Austria	Eurostat		
SDG 7. Ensure access to affordable, reliable, sustain	nable and modern energy for all				
7.1 By 2030, ensure universal access to affordable, reliable and modern energy services	7.1.1 Proportion of population with access to electricity	_ a	07.10 Percentage of people affected by fuel poverty (inability to keep home		
	7.1.2 Proportion of population with primary reliance on clean fuels and technology	_ a	adequately warm) 07.20 Share of renewable energy in gross final		
7.2 By 2030, increase substantially the share of renewable energy in the global energy mix	7.2.1 Renewable energy share in the total final energy consumption	Renewable energy share in gross final energy consumption	energy consumption 07.30 Primary energy consumption; final energy		
7.3 By 2030, double the global rate of improvement in energy efficiency	7.3.1 Energy intensity measured in terms of primary energy and GDP	Energy intensity: Final energy consumption per GDP Final energy consumption	consumption by sector 07.32 Final energy consumption in households per capita		
 7.a By 2030, enhance international cooperation to facilitate access to clean energy research and technology, including renewable energy, energy efficiency and advanced and cleaner fossil-fuel technology, and promote investment in energy infrastructure and clean energy technology 7.b By 2030, expand infrastructure and upgrade technology for supplying modern and sustainable energy services for all in developing countries, in particular least developed countries, small island developing States and landlocked developing countries, in accordance with their respective programmes of support 	 7.a.1 International financial flows to developing countries in support of clean energy research and development and renewable energy production, including in hybrid systems 7.b.1 Investments in energy efficiency as a proportion of GDP and the amount of foreign direct investment in financial transfer for infrastructure and technology to sustainable development services 	International financial flows to developing countries in support of clean energy research and development and renewable energy production	07.33 Energy dependence 07.35 Energy productivity 13.14 Greenhouse gas emissions intensity of energy consumption ^c		

	Indicators							
Goal/l'arget	UN	Statistics Austria	Eurostat					
Goal 13. Take urgent action to comb	at climate change and its impacts	-						
13.1 Strengthen resilience and	13.1.1 Number of deaths, missing persons and directly affected	Number of deaths attributed to disasters	13.11 Greenhouse gas emissions (indexed totals					
adaptive capacity to	persons attributed to disasters per 100,000 population	per 100,000 population	and per capita)					
climate-related hazards and	13.1.2 Number of countries that adopt and implement national	National Crisis and Disaster	13.14 Greenhouse gas emissions intensity of					
natural disasters in all	disaster risk reduction strategies in line with the Sendai	Management	energy consumption					
countries	Framework for Disaster Risk Reduction 2015–2030		13.21 Global (and European) near surface					
	13.1.3 Proportion of local governments that adopt and		average temperature					
	implement local disaster risk reduction strategies in line		13.45 Economic losses caused by climate					
	with national disaster risk reduction strategies		extremes (consider climatological,					
13.2 Integrate climate change	13.2.1 Number of countries that have communicated the	Austrian National Adaptation Strategy	hydrological, meteorological)					
measures into national policies,	establishment or operationalization of an integrated		13.51 Contribution to the 100bn international					
strategies and planning	policy/strategy/plan which increases their ability to		commitment on climate related					
	adapt to the adverse impacts of climate change, and		expending (public finance)					
	foster climate resilience and low greenhouse gas		13.63 Share of EU population covered by the					
	emissions development in a manner that does not		new Covenant of Mayors for Climate and					
	threaten food production		Energy (integrating mitigation,					
	-	Greenhouse gas emissions	adaptation, and access to clean and					
			affordable energy)					
			07.20 Share of renewable energy in gross final					
			energy consumption ^c					
			07.30 Primary energy consumption; final energy					
			consumption by sector ^c					
			12.51 Average CO_2 emissions per km from new					
			passenger cars ^c					
			14.31 Ocean acidification ^c					

		Indicators	
Goal/Target	UN	Statistics Austria	Eurostat
Goal 13. Take urgent action to comb	at climate change and its impacts		
13.3 Improve education,	13.3.1 Number of countries that have integrated mitigation,	_ b	
awareness-raising and human	adaptation, impact reduction and early warning into		
and institutional capacity on	primary, secondary and tertiary curricula		
climate change mitigation,	13.3.2 Number of countries that have communicated the	_ b	
adaptation, impact reduction	strengthening of institutional, systemic and individual		
and early warning	capacity-building to implement adaptation, mitigation		
	and technology transfer, and development actions		
13.a Implement the commitment	13.a.1 Mobilized amount of United States dollars per year	_ ^a	
undertaken by developed	between 2020 and 2025 accountable towards the \$100		
country parties to the UNFCCC	billion commitment		
to a goal of mobilizing jointly			
\$100 billion annually by 2020			
from all sources			
13.b Promote mechanisms for raising	13.b.1 Number of least developed countries and small island	- b	
capacity for effective climate	developing States that are receiving specialized support,		
change-related planning and	and amount of support, including finance, technology		
management in least developed	and capacity-building, for mechanisms for raising		
countries and small island	capacities for effective climate change-related planning		
developing States, including	and management, including focusing on women, youth		
focusing on women, youth and	and local and marginalized communities		
local and marginalized			
communities			

^a Not relevant for Austria/already achieved, ^b Indicator at UN level, ^c Multipurpose indicator.

The indicator systems described above cover the three pillars of sustainable development [27], also recognizing the central role of energy and climate change. Given that the scope of these indicator systems is very broad, they are not suitable for a detailed monitoring or steering of policy towards achieving the SDGs. Several indicator sets are available that focus on energy as a key element in sustainable development, most notably the Sustainable Energy Development (SED) Indicators [28] devised by the International Energy Agency (IEA) and the International Atomic Energy Agency (IEA), and the IAEA Energy Indicators for Sustainable Development [29]. These will be described in more detail below.

The SED indicators measure the progress towards "the provision of adequate energy services at affordable cost in a secure and environmentally benign manner, in conformity with social and economic development needs" [28]. IEA and IAEA propose 41 indicators for sustainable energy development that cover the whole energy system and its driving forces. This means the indicators cover primary energy supply, transformation technologies and final energy demand as well as energy intensities, the fuel mix and energy service demand. Economic and social factors (e.g., GDP, prices, population growth) affect the energy system and emissions resulting from energy consumption and energy supply.

The IEA/IAEA SED indicators have been applied to a number of countries (e.g., Lithuania [30], Cuba [31] and Mexico [32]). Depending on the challenges of energy policy and data availability, in most cases only a subset of indicators was used. Davidsdottir et al. [33] applied a set of SED indicators to Iceland, UK, USA, Sweden, Brazil and Mexico. In addition, Davidsdottir et al. [33] and Ibarrarán Viniegra et al. [34] show that the SED indicators can be communicated more easily when they are aggregated as a composite index, the so-called Sustainable Energy Index, which consists of one sub-index for each dimension of sustainable development.

Other indicator frameworks address energy security instead of sustainable energy consumption. If energy security is defined broadly, there is a strong overlap with sustainable energy development. The broad notion of energy security has economic, social and ecological aspects, albeit often with a stronger focus on economic aspects. Relevant works in this context include [16,17,35–39]. With respect to climate change, several indicator systems are also available. These indicators or indices, however, follow a less comprehensive approach, addressing mainly environmental aspects. Examples include the National Climate Indicators System Report [40], the Climate Change Performance Index [41], and the Climate Change Cooperation Index [42].

The ClEP Approach

The IEA system of Sustainable Energy Development (SED) indicators [28] provides a broad range of indicators for all levels of the energy system. This indicator set is the starting point for choosing relevant indicators in the demand-side sectors (residential buildings, mobility, manufacturing, services) as well as electricity and heat supply that could be applied to monitor progress in energy and climate policy at the EU or Member State levels. With respect to final energy demand, the focus is on indicators that relate to energy services because these determine welfare and economic development. The conceptual development of indicators was based on our extensive screening of available databases (e.g., Odyssee database, IEA database or Eurostat) regarding the availability of relevant indicators. Restrictions on data availability (many indicators are not available for all countries and years) co-determined the final set of indicators, i.e., we only included indicators for which at least some data for the EU Member States were available.

Data availability was acceptable for the economic and ecological dimensions but is particularly limited for the social dimension. Thus, additional information would be required to comprehensively track changes in energy use patterns and related social impacts. Gaps exist in the available data sets especially but not exclusively for the new EU Member States, where it is not possible to compile a longer time series. Moreover, for our analysis, more refined data on the use categories of final energy demand would be useful as well as more detailed information on the efficiencies of appliances (e.g., disentangling the effect of usage time from technical efficiency), non-motorised transport, investment costs, levelized costs of generation, life cycle emissions and other environmental effects such as land use and water use. Comprehensive and comparable data on energy poverty and mobility behaviour, as well as on the quality of employment at sectoral level, would also significantly improve the assessment of sustainable energy development.

In identifying indicators for sustainable energy demand, all levels of the energy system must be considered, from energy services via final energy demand to primary energy supply. Given that data on energy services are not available, proxy indicators must be specified to capture energy service demand. These proxies include transport performance, i.e., passenger and tonne kilometres for mobility as a proxy for the energy service "access to people, goods and services at different distances", the floor area of residential buildings as a proxy for "living space at a comfortable room temperature" or "lighting", population for "information, communication and other services related to consumer electronics" or "cooking" and gross value added as a proxy for energy services in the sectors manufacturing and services.

Table 2 shows the structure of the ClEP indicator framework (in Table A1 in the **APPENDICES** the disaggregated list of indicators is provided). For each sector, the indicators are arranged in five modules comprising context indicators, energy service indicators and energy system indicators covering the three dimensions of sustainable development.

Context indicators include e.g., average household size, energy prices or heating degree days. For the demand-side sectors, indicators for the economic dimension include the efficiency of energy service provision (i.e., the energy service proxy divided by final energy consumption), energy costs, and patents related to energy efficiency. Economic indicators for electricity and heat supply capture transformation and distribution efficiencies, energy technology patents, and public energy R&D expenditures. The environmental dimension covers the share of renewable energy as well as CO₂, NO_x and SO₂ emissions and intensities for all sectors. For the social dimension, we developed indicators for the following sectors: residential buildings, passenger transport, and electricity and heat supply. These indicators cover i.a. the affordability of energy-related appliances and comfortable room temperature, household equipment rates with certain appliances, differences in the shares of energy costs in household expenditure by income quintiles, or the share of electric and alternative vehicles in new registrations.

In contrast to the demand-side sectors, electricity and heat supply is only indirectly related to energy services. Final energy demand and energy supply technologies determine the energy input required to supply power and heat. Thus, emissions are a result of the transformation technologies used (plant types), the fuel mix and the level of final demand. The structure of energy indicators for this sector hence deviates from the demand-side sectors. The social indicators for energy supply include the gender pay and employment gap, wage issues, and work health aspects.

For the four demand-side sectors, a set of 109 aggregate energy indicators has been assembled. These indicators have been further disaggregated to 334 indicators (e.g., the energy efficiency of electricity and heat supply can be disaggregated by plant type, and household energy efficiency can be differentiated by use category). For electricity and heat supply, we compiled a set of 21 energy indicators providing an aggregate view of the sector. These indicators were further disaggregated to about 54 indicators, differentiated by energy source and plant type.

Table 2. List of indicators.

Dimension		Sector								
[of sustainable			Demand Side		_					
development]	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply				
Drivers/Context	Housing stock	Stock of vehicles Stock of trucks and light				Power plant capacity				
			vehicles							
	FA per capita	Modal split	Modal split	Share of GVA in GDP	Share of GVA in GDP					
		Share of road pkm	Share of road tkm							
		Share of rail pkm	Share of rail tkm							
			Share of inland							
			waterways tkm							
	Number of HH	Road	km	Share of energy						
		Rail k	xm	intensive industry ¹ in						
	HH size	Road km/	rail km	FEC						
	HH income	Share of e-vehicles								
	Heating Degree Days	Specific CO ₂ emissions of car								
		stock								
		Specific CO ₂ emissions of								
		newly registered cars								
	Energy price	Energy p	prices	Energy prices	Energy prices	Energy prices				
				Carbon price		Carbon price				

Table 2. Cont.

Dimension			Secto	r		
[of sustainable			Demand Side			
development]	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
Energy Service	Well-tempered living	Mobility: pkm	Transport of goods: tkm	GVA	GVA	
Proxies	space: FA					
	Illumination: HH					
	Warm water: CAP					
	Cooking: HH					
	Communication/Entertain					
	ment: HH					
	Other: HH					
Economic	Efficiency of residential	Efficiency of passenger	Efficiency of freight	Efficiency of	Efficiency of service	Distribution efficiency
	sector (HH/FEC)	transport (pkm/FEC)	transport (tkm/FEC)	manufacturing	sector	Transformation
						efficiency
	FEC	FEC	FEC	FEC	FEC	Transformation input
						(TI)
						Transformation output
						(TO)
	Share of energy	Share of transport		Share of costs	Share of costs	
	expenditure in household	expenditure in household				
	expenditure	expenditure				
	Public R&D expenditures	Public R&D expend	litures transport	Public R&D expenditures		Public energy R&D
	energy efficiency			energy efficiency		expenditures
	buildings			industry		
	Applied patents energy	Applied patents energy	v efficiency transport	Applied patents		Applied energy
	efficiency buildings			mitigation industry		technology patents

Table 2. Cont.

Dimension	Sector							
[of sustainable			Demand Side					
development]	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply		
Ecological	Share of RES	Share of RES in TI						
	CO ₂ emissions	CO ₂ emissions						
	NO _x emissions	NO _x emissions						
	SO ₂ emissions	SO ₂ emissions						
	CO ₂ efficiency of FEC	CO ₂ efficiency of TI						
	NO _x efficiency of FEC	NO _x efficiency of TI						
	SO ₂ efficiency of FEC	SO ₂ efficiency of TI						
Social	Persons who cannot	New registrations of				Low-wage earners		
	afford a telephone	passenger cars						
	Persons who cannot	New registrations of electric				Median hourly earnings		
	afford a colour TV	passenger cars						
	Persons who cannot	New registrations of				Temporary contracts		
	afford a computer	passenger cars w alternative						
		drives						
	Persons who cannot	Level of difficulty to access				Incidence rate of fatal		
	afford a washing machine	public transport				accidents at work		
	Persons who cannot	Persons who cannot afford a				Flexibility of the work		
	afford internet connection	car				schedule		
	for personal use at home							
	Population unable to keep					Gender pay gap		
	home adequately warm							
	by poverty status							

Table 2. Cont.

Dimension	Sector									
[of sustainable			Demand Side							
development]	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply				
	Share of Heating costs in					Gender employment gap				
	HH income									
	Equipment rate-fridge									
	Equipment rate-freezer									
	Equipment rate-washing									
	machine									
	Equipment									
	rate-dishwasher									
	Equipment rate-TV									

CAP—persons; E&H—electricity and heat; FA—floor area; FEC—final energy consumption, GDP—gross domestic product; GVA—gross value added; HH—households, pkm—person kilometres; RES—renewable energy sources; R&D—Research and Development; TI—transformation input; TO—transformation output; tkm—tonne kilometres. Indicators in bold can be broken down into sub-indicators.

¹ Energy intensive industry here includes chemical sector, primary metals production, non-metallic minerals production, paper production, and wood production.

AVAILABLE DATA SOURCES FOR THE CLEP INDICATORS

In order to compile the indicators for the EU Member States, several databases need to be deployed. Data are available from the following databases:

- *Odyssee database* [43]: data on energy service proxies (floor area of dwellings, number of households, passenger and freight transport performance, gross value added of the manufacturing and service sectors), and the related efficiency data, information on the different capital stocks and equipment rates, sectoral shares of renewable energy sources and final energy consumption by energy source;
- *The European Environment Agency's database* [44]: CO₂ emissions of newly registered vehicles;
- *IEA database* [45–47]: transformation input and output by energy source, plant capacities, energy prices and sectoral public energy expenditure;
- UNFCCC National Inventories [1]: GHG emission data;
- *Eurostat database* [48–52]: household income and expenditures, social indicators (except for equipment rates);
- *OECD database* [53]: patent data;
- *EEX* [54]: data on carbon prices.

We aimed at identifying official data sources for the indicators that are available for all (or at least for the majority of) the EU Member States (like the Eurostat database, the OECD database, the EEA database or the UNFCCC National Inventories). Especially with respect to energy services and stocks, relevant data was not available from official statistical sources, so we relied on the Odyssee database in this regard. The latter provides information on final energy consumption by end-use category, the underlying drivers of energy demand, disaggregated energy efficiencies and CO₂ related indicators; data are provided by national institutions (e.g., energy agencies or statistical organizations) from all EU countries as well as Norway, Switzerland and Serbia. Moreover, we suggest using information on energy prices and sectoral public energy expenditure from the IEA database due to better data availability as compared to the Eurostat database. The detailed list of data sources for the individual indicators can be found in Table A2 and Table A3 in the APPENDICES.

A GLANCE AT INTERACTIONS BETWEEN DIMENSIONS AND INDICATORS

Given the importance of accounting for interactions between SDGs and sub-targets, we highlighted the relationship between the energy service focused ClEP indicators and the broader context of the SDGs. For example, when integrating the social dimension into the climate and energy policy indicator set, the focus is on the quality of employment on the energy supply side, whereas the focus is on daily conduct of life

practices in private households on the energy demand side [55]. We identified cross-cutting issues that are relevant for all areas and at the same time highlight the relation to some other SDGs: gender equality [56,57] and gender equity [58]—both for energy supply and energy demand [59], improving the quality of employment (on the energy supply side) and respectively quality of life (on the energy demand side), as well as participation on the energy supply side or inclusion on the energy demand side. Reflecting the outcomes makes the multidimensionality and the ambivalences of the different dimensions visible, in particular as a consequence of the inclusion of the social dimension. For example, an increase in physical assets such as household appliances and vehicles may mean a reduction of social inequality and/ or an increase in mobility, same time can have negative impacts on but at the environment-depending on the choice of technologies and/or fuels. This example reveals the multiple uncertainties associated with attempts to predict how particular future trends affect everyday life, consumption and mobility behaviors.

Table 3 exemplifies interactions between different indicators and goals. Trade-offs between different SDGs become visible. Depending on the underlying assumptions, different development paths are conceivable, with varying impacts on the environment as well as economic and social development.

Fahla 2 Intardar	andonco tablo	of cocial indicators	, and thair imr	not on the SDCe
Lable 5. Internet	Jenuence lable	of social multators	s and then mill	all on the spos.

		Social							
		Population able to keep home adequately warm			New re	gistratio lectric o	ns of pass r alternat	enger cars with ive drives	
		7 AFFORDARIE AND CLEANENERBY	5 EDUBER	13 CLIMATE	GHG emission reduction	7 AFFOREMENTER AND CLEANEMERTRY	5 EQUALITY	13 CUIMATE	GHG emission reduction
tial	Reduced number of low-wage earners	2	2	-1	-2	1	1	-1	-1
Soc	Reduced gender employment gap	1	1	1/-1	-1	1	2	1/-1	1

The evaluation of interactions follows Nilsson et al. [5] and ranges from -3 to +3: -3 denotes cancelling targets while +3 denotes indivisible targets.

Table 3 shows that an increase in the number of low-wage earners implies a considerable change in material and immaterial deprivation. This may entail, for instance, an increase in the proportion of the population unable to sufficiently heat their home or a lower number of newly registered electric cars and cars with alternative drive systems. This would negatively impact the achievement of SDG 7 "Ensure access to affordable, reliable, sustainable and modern energy for all". At the same time, this raises the question of whether the purchase of a more energy-efficient car would replace an existing conventional vehicle or if it would add an additional car to the household's stock. The latter may

possibly mean an increase in mobility, in particular of women and young adults in the household, since they are often the users of the additional car, which in turn would have a negative effect from an environmental perspective and respectively SDG 13 "Take urgent action to combat climate change and its impacts". By contrast, if increased mobility implies that women drive more, it would positively affect SDG 5 "Achieve gender equality and empower all women and girls" by increasing mobility options and the opportunities for participation in the labour force or other social activities. These different lines of argumentation illustrate that, depending on the assumptions made or the focus chosen, the effects would need to be judged differently.

These observations point to the comprehensive political and social challenges, both regionally and globally, of finding and deploying holistic and coherent measures that address the complex interactions between the SDGs in unison. It should be noted that all SDGs are "integrated and indivisible" and therefore should be considered equal [24]. Focusing on individual goals and ignoring others creates the risk of overlooking relevant side effects and failing to recognise and make use of potential synergies [2].

Added to this is the problem of data availability mentioned before. The lack of data can distort the picture, if indicators for relevant impacts and policy areas are missing.

CONCLUSIONS

The UN SDGs and the Paris Climate Agreement both imply ambitious (long-term) targets that can only be met with a fundamental restructuring of economic and social systems. In this context, monitoring of progress towards achievement of goals is essential and requires thorough measurement systems.

The complexity calls for indicator systems instead of single indicators. Although the list of indicators proposed to monitor the 17 SDGs and the corresponding 169 targets is already very comprehensive, more detailed indicator sets for individual SDGs are required for the monitoring and steering of policy. Moreover, the General Assembly of the UN proposed complementing the UN indicator set with operational indicators at the national and regional levels to be developed by the countries and which would reflect their particular circumstances [24]. Against this background, we propose a set of indicators that allow monitoring of progress towards energy and climate policy targets at the EU and Member State levels.

We combine the energy service perspective with research on sustainable energy development indicators and apply this approach in the broader context of the SDGs. Furthermore, we put particular emphasis on the consideration of the social dimension and the development of respective indicators. The proposed sustainable energy indicators cover the three dimensions of sustainable development. As for the SDGs, interactions (i.e., synergies and conflicts) between the different target dimensions and the corresponding indicators need to be carefully considered.

As shown in Kettner et al. [60], a composite index can be used to complement comprehensive indicator systems such as the one at hand. Composite indices are a common method used to condense multifaceted information and to improve the communicability of results. In Kettner et al. [60], this approach was applied to assess the sustainable energy development in nine EU countries using a subset of indicators. One group of composite indices focussed on the dimension of sustainable development and the other on the sectoral disaggregation, providing concise information on trends in each country. Recently, composite indices that summarise global progress while considering possible conflicts and trade-offs between individual targets and indicators have been developed based on a Goal Programming Model [61,62] or a Multidimensional Synthesis of Indicators approach [63]. Applying these methods to our indicator set would presumably deliver valuable insights but would require better data availability.

Given the complexity of the issue and the gaps in data availability/adequate indicators, it is challenging to interpret certain observable trends. For instance, an increase in electric cars can have both beneficial and detrimental effects on the environment, depending on whether these cars are substitutes for fossil-fuel-powered cars or additional vehicles. By contrast, an increasing number of vehicles can enhance mobility and thereby be interpreted as an improvement in the social dimension of sustainable development. However, the net effect on mobility is again impossible to assess because no data on non-motorised transport are available and particularly due to the complex underlying interactions. This needs to be kept in mind when using the indicator system for policy analysis. The analysis highlights the importance of taking into account the multitude of interactions between different sustainable development targets. The comprehensive assessment helps prevent perverse outcomes and contributes to fully utilising the potential for achieving synergistic outcomes for other targets. Applying advanced statistical methods such as principal component analysis would shed light on correlations between the individual indicators. This would require, however, further advances in data and indicator availability for a larger number of EU Member States because many indicators currently are available only for a small number of countries and individual years.

J Sustain Res. 2020;2(3):e200027. https://doi.org/10.20900/jsr20200027

AUTHOR CONTRIBUTIONS

All authors jointly designed the study and developed the indicator framework. All authors contributed to writing the paper.

CONFLICTS OF INTEREST

The authors declare that there is no conflict of interest.

FUNDING

This research was funded by the Climate and Energy Funds within the Austrian Climate Research Programme (ACRP).

ACKNOWLEDGMENTS

We would like to thank Katharina Köberl and Susanne Markytan for excellent research assistance.

APPENDICES

Table A1. Detailed list of indicators.

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
Drivers/Context	Housing stock	Stock of vehicles	Stock of trucks and light			Power plant capacity
		Vehicles	vehicles			Capacity power plants
		• Diesel-driven cars				• Capacity nuclear plants
		Gasoline-driven cars				Capacity hydro plants
		Gas-driven cars				• Capacity geothermal plants
		• Electric-driven cars				• Capacity solar PV plants
		Motor cycles				• Capacity solar thermal plants
		• Busses				Capacity combustible plants
						Capacity other sources plants
	FA per capita	Modal split	Modal split	Share of GVA in GDP	Share of GVA in GDP	
		• Share of road pkm	• Share of road tkm			
		• Share of rail pkm	• Share of rail tkm			
			• Share of inland			
			waterways tkm			

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	Number of HH	Road	km	Share of energy intensive industry ¹ in		
		Rail km		FEC		
	HH size	Road km	/rail km	• Share of energy intensive industry in		
	HH income	Share of e-vehicles		FEC		
	• Quintile 1			• Share of energy intensive industry in		
	• Quintile 2			FEC coal		
	• Quintile 3			• Share of energy intensive industry in		
	• Quintile 4			FEC gas		
	• Quintile 5			• Share of energy intensive industry in		
	Heating Degree	Specific CO ₂ emissions of		FEC oil		
	Days	car stock		• Share of energy intensive industry in		
		Specific CO ₂ emissions of		FEC biomass		
		newly registered cars		• Share of energy intensive industry in		
				FEC electricity		
				• Share of energy intensive industry in		
				FEC heat		
	Energy prices	Energy	prices	Energy prices	Energy prices	Energy prices
	Gas price	Gasoline price		Gas price industry	Gas price	Gas price energy plants
	households	Diesel price		Heavy fuel oil price industry	Oil price	Oil price energy plants
	Oil price			Light fuel oil price industry	Electricity price	Coal price energy plants
	households			Coal price industry		
	Electricity price			Electricity price industry		
	households					
				Carbon price		Carbon price

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Freight Transport Manufacturing		Electricity & Heat Supply
Energy Service	Well-tempered	Mobility	Transport of goods	GVA	GVA	
Proxies	living space: FA	• Pkm total	• Tkm total	• GVA industry		
	Illumination: HH	• Pkm road	• Tkm road	• GVA chemical sector		
	Warm water: CAP	• Pkm rail	• Tkm rail	• GVA primary metals production		
	Cooking: HH		• Tkm inland	• GVA non-metallic minerals production		
	Communication/Ent		waterways	GVA wood sector		
	ertainment: HH			• GVA paper sector		
	Other: HH					
Economic	Efficiency of	Efficiency of passenger	Efficiency of freight	Efficiency of manufacturing	Efficiency of service	Distribution efficiency
	residential sector	transport (pkm/FEC)	transport (tkm/FEC)	• GVA/FEC	sector	Distribution efficiency
	(HH/FEC)	• Pkm/FEC	• Tkm/FEC	• GVA/FEC coal	• GVA/FEC	Distribution efficiency
	Household/FEC	Pkm/FEC gasoline	Tkm/FEC diesel	• GVA/FEC gas	• GVA/FEC coal	electricity
	Household/FEC	Pkm/FEC diesel	Tkm/FEC electricity	• GVA/FEC oil	GVA/FEC gas	Distribution efficiency heat
	coal	Pkm/FEC gas	Tkm/FEC biofuels	GVA/FEC biomass	• GVA/FEC oil	
	Household/FEC	Pkm/FEC jet fuel		• GVA/FEC electricity	GVA/FEC biomass	
	gas	Pkm/FEC electricity		• GVA/FEC heat	GVA/FEC	
	Household/FEC	Pkm/FEC biofuels			electricity	
	oil				GVA/FEC heat	
	Household/FEC					
	biomass					
	Household/FEC					
	electricity					
	Household/FEC					
	heat					

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	Efficiency of			Efficiency of chemical sector		Transformation efficiency (TO/
	space heating			(GVA/FEC)		TI)
	(FA/FEC)			• GVA/FEC chemical sector		Transformation efficiency
	FA/FEC space			• GVA/FEC coal chemical sector		Transformation efficiency
	heating			• GVA/FEC gas chemical sector		coal plants
	• FA/FEC coal			• GVA/FEC oil chemical sector		• Transformation efficiency gas
	space heating			• GVA/FEC biomass chemical sector		plants
	• FA/FEC gas space			• GVA/FEC electricity chemical sector		• Transformation efficiency oil
	heating			• GVA/FEC heat chemical sector		plants
	• FA/FEC oil space					Transformation efficiency
	heating					waste plants
	• FA/FEC biomass					Transformation efficiency
	space heating					renewables plants
	• FA/FEC electricity					
	space heating					
	• FA/FEC heat					
	space heating					

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	Efficiency of warm			Efficiency of primary metals sector		
	water			(GVA/FEC)		
	(CAP/FEC)			GVA/FEC primary metals sector		
	CAP/FEC warm			• GVA/FEC coal primary metals sector		
	water			• GVA/FEC gas primary metals sector		
	CAP/FEC coal			• GVA/FEC oil primary metals sector		
	warm water			• GVA/FEC biomass primary metals		
	CAP/FEC oil			sector		
	warm water			• GVA/FEC electricity primary metals		
	• AP/FEC gas warm			sector		
	water			• GVA/FEC heat primary metals sector		
	CAP/FEC biomass					
	warm water					
	CAP/FEC					
	electricity warm					
	water					
	CAP/FEC heat					
	warm water					

Dimension (of		Sector							
sustainable			Demand S	ide					
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply			
	Efficiency of cooking			Efficiency of non- metallic minerals					
	(CAP/FEC)			production (GVA/FEC)					
	CAP/FEC cooking			• GVA/FEC non-metallic minerals					
	CAP/FEC coal			production					
	cooking			• GVA/FEC coal non-metallic minerals					
	• CAP/FEC gas			production					
	cooking			• GVA/FEC gas non-metallic minerals					
	• CAP/FEC biomass			production					
	cooking			• GVA/FEC oil non-metallic minerals					
	• CAP/FEC			production					
	electricity			GVA/FEC biomass non-metallic					
	cooking			minerals production					
				GVA/FEC electricity non-metallic					
				minerals production					
				• GVA/FEC heat non-metallic minerals					
				production					

Journal	l of Sus	tainability	Research
---------	----------	-------------	----------

Dimension (of	Sector								
sustainable			Demand S	ide					
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply			
	Efficiency of			Efficiency of paper production					
	electrical			(GVA/FEC)					
	appliances			GVA/FEC paper production					
	(HH/FEC)			• GVA/FEC coal paper production					
				• GVA/FEC gas paper production					
				• GVA/FEC oil paper production					
				• GVA/FEC biomass paper production					
				• GVA/FEC electricity paper production					
				• GVA/FEC heat paper production					
				Efficiency of wood production (GVA/FEC)					
				GVA/FEC wood production					
				• GVA/FEC coal wood production					
				GVA/FEC oil wood production					
				GVA/FEC gas wood production					
				GVA/FEC biomass wood production					
				• GVA/FEC electricity wood production					
				GVA/FEC heat wood production					

Dimension (of				Sector		
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	FEC	FEC	FEC	FEC	FEC	Transformation input
	• FEC	• FEC	• FEC	• FEC	• FEC	• TI
	• FEC coal	FEC gasoline	FEC diesel	• FEC coal	FEC coal	• TI coal
	• FEC gas	• FEC diesel	• FEC electricity	• FEC gas	FEC gas	• TI gas
	• FEC oil	• FEC gas	FEC biofuels	• FEC oil	• FEC oil	• TI oil
	FEC biomass	• FEC jet fuel		• FEC biomass	FEC biomass	• TI waste
	• FEC electricity	• FEC electricity		• FEC electricity	• FEC electricity	• TI renewables
	• FEC heat	FEC biofuels		• FEC heat	• FEC heat	
	FEC space			FEC chemical sector		Transformation output
	heating			• FEC chemical sector		то
	FEC space			FEC coal chemical sector		• TO coal plants
	heating			• FEC gas chemical sector		• TO gas plants
	FEC coal space			• FEC oil chemical sector		• TO oil plants
	heating			FEC biomass chemical sector		• TO waste plants
	• FEC gas space			• FEC electricity chemical sector		• TO renewable plants
	heating			• FEC heat chemical sector		
	FEC oil space					
	heating					
	FEC biomass					
	space heating					
	FEC electricity					
	space heating					
	• FEC heat space					
	heating					

Dimension (of						
sustainable						
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	FEC warm water			FEC primary metals production		
	• FEC warm water			• FEC primary metals production		
	• FEC coal warm			• FEC coal primary metals production		
	water			• FEC gas primary metals production		
	• FEC gas warm			• FEC oil primary metals production		
	water			• FEC biomass primary metals		
	• FEC oil warm			production		
	water			• FEC electricity primary metals		
	FEC biomass			production		
	warm water			• FEC heat primary metals production		
	FEC electricity					
	warm water					
	• FEC heat warm					
	water					

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	FEC cooking			FEC non-metallic minerals		
	FEC cooking			production		
	• FEC coal cooking			• FEC non-metallic minerals production		
	• FEC gas cooking			• FEC coal non-metallic minerals		
	FEC biomass			production		
	cooking			• FEC gas non-metallic minerals		
	• FEC electricity			production		
	cooking			• FEC oil non-metallic minerals		
				production		
				• FEC biomass non-metallic minerals		
				production		
				• FEC electricity non-metallic minerals		
				production		
				• FEC heat non-metallic minerals		
				production		
	FEC electrical			FEC paper production		
	appliances			FEC paper production		
				FEC coal paper production		
				• FEC gas paper production		
				• FEC oil paper production		
				FEC biomass paper production		
				FEC electricity paper production		
				• FEC heat paper production		

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
				FEC wood production		
				FEC wood production		
				• FEC coal wood production		
				FEC gas wood production		
				FEC oil wood production		
				FEC biomass wood production		
				FEC electricity wood production		
				FEC heat wood production		
	Share of energy	Share of transport		Share of costs	Share of costs	
	expenditure in	expenditure in		Share of energy costs industry	• Share of energy	
	household	household expenditure		Share of energy costs gas	costs service	
	expenditure			• Share of energy costs heavy oil	• Share of energy	
				Share of energy costs coal	costs gas	
				Share of energy costs electricity	• Share of energy	
					costs oil	
					• Share of energy	
					costs coal	
					• Share of energy	
					costs electricity	

Dimension (of						
sustainable			Demand S	ide		
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	Public R&D	Public R&D e	expenditures	Public R&D expenditures energy		Public energy R&D
	expenditures	• Public R&D expenditur	es for energy efficiency	efficiency industry		expenditures
	energy efficiency	transport				• Public R&D expenditures for
	buildings	• Public R&D expenditur	es for e-mobility			renewable energy sources
						• Public R&D expenditures for
						carbon capture storage
	Applied patents	Applied patents energy efficiency transport		Applied patents mitigation industry		Applied energy technology
	energy efficiency					patents
	buildings					Applied patents mitigation
						Applied patents carbon
						capture storage
Ecological	Share of RES	Share of RES	Share of RES	Share of RES	Share of RES	Share of RES in TI
	• Share of RES in			Share of RES industry		
	HH FEC			Share of RES chemical sector		
	Share of RES			• Share of RES primary metals		
	space heating			production		
	Share of RES			Share of RES non-metallic minerals		
	warm water			production		
	Share of RES			Share of RES paper production		
	cooking			Share of RES wood production		
	CO ₂ emissions	CO ₂ emissions	CO ₂ emissions	CO ₂ emissions	CO ₂ emissions	CO ₂ emissions
	NO _x emissions	NO _x emissions	NO _x emissions	NO _x emissions	NO _x emissions	NO _x emissions
	SO ₂ emissions	SO ₂ emissions	SO ₂ emissions	SO ₂ emissions	SO ₂ emissions	SO ₂ emissions
	CO ₂ efficiency of	CO ₂ efficiency of FEC	CO ₂ efficiency of FEC	CO ₂ efficiency of FEC	CO ₂ efficiency of FEC	CO ₂ efficiency of TI
	FEC					

Dimension (of	Sector							
sustainable		-	Demand S	ide				
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply		
	NO _x efficiency of	NO _x efficiency of FEC	NO _x efficiency of TI					
	FEC							
	SO ₂ efficiency of FEC	SO ₂ efficiency of TI						
Social	Persons who cannot	New registrations of				Low-wage earners		
	afford a telephone	passenger cars						
	Persons who cannot	New registrations of				Median hourly earnings		
	afford a colour TV	electric passenger cars						
	Persons who cannot	New registrations of				Temporary contracts		
	afford a computer	passenger cars w						
		alternative drives						
	Persons who cannot	Level of difficulty to				Incidence rate of fatal accidents		
	afford a washing	access public transport				at work		
	machine							
	Persons who cannot	Persons who cannot				Flexibility of the work schedule		
	afford internet	afford a car						
	connection for							
	personal use at							
	home							
	Population unable					Gender pay gap		
	to keep home							
	adequately warm by							
	poverty status							

Dimension (of						
sustainable						
development)	Residential	Passenger Transport	Freight Transport	Manufacturing	Services	Electricity & Heat Supply
	Share of Heating					Gender employment gap
	costs in HH income					
	• Quintile 1					
	• Quintile 2					
	• Quintile 3					
	• Quintile 4					
	• Quintile 5					
	Equipment					
	rate-fridge					
	Equipment					
	rate-freezer					
	Equipment					
	rate-washing					
	machine					
	Equipment					
	rate–dishwasher					
	Equipment rate-TV					

CAP—persons; E&H—electricity and heat; FA—floor area; FEC—final energy consumption, GDP—gross domestic product; GVA—gross value added; HH—households, pkm—person kilometres; RES—renewable energy sources; R&D—Research and Development; TI—transformation input; TO—transformation output; tkm—tonne kilometres.

¹ Energy intensive industry here includes chemical sector, primary metals production, non-metallic minerals production, paper production, and wood production.

Table A2. Demand-side indicators: Data sources.

Dimension	Sector	Indicator	Source
Context	Residential	Household data	Odyssee database
		HH income (qu.)	EU-SILC
	Transport	Car stock data	Odyssee database
		Modal split	Odyssee database
		Road/rail km	Odyssee database
		Share of e-vehicles	EEA, CO ₂ emissions from passenger cars
		Share of alternative drives	EEA, CO ₂ emissions from passenger cars
		Specific CO ₂ emissions of newly registered cars	EEA, CO ₂ emissions from passenger cars
		Specific CO ₂ emissions of car stock	Odyssee database
	Industry/Service	GVA	Odyssee database
	All sectors	Energy prices	IEA Energy Price Taxes
Energy Service	Residential	Well-tempered living space proxy: Floor area	Odyssee database
		Illumination Proxy: Floor area	Odyssee database
		Warm water Proxy: Population	Odyssee database
		Cooking Proxy: Households	Odyssee database
		Communication/Entertainment Proxy: Households	Odyssee database
	Passenger Transport	Mobility Proxy: pkm	Odyssee database
	Freight Transport	Transport of goods proxy: tkm	Odyssee database
	Service	Proxy: GVA	Odyssee database
	Industry	Proxy: GVA	Odyssee database
Economic	All sectors	Energy efficiency data	Odyssee database
		R&D data	IEA, Energy R&D Expenditures
		Patent data	OECD, EPO database
	Residential/Transport	Share of energy expenditure	Eurostat, COICOP
	Industry/Service	Share of energy costs	IEA, Odyssee
Ecologic	All sectors	Share of renewables in sectors	Odyssee database
		Emission data	UNFCCC, National Inventory Reports
Social	Residential/Transport	Affordability data	Eurostat, EU-Silc
	Residential	Equipment rates	Odyssee database
		Share of heating costs (qu.)	Eurostat, Household budget survey
	Transport	New registration of cars	EEA, CO ₂ emissions from passenger cars
		Accessibility of public transport	Eurostat, EU-Silc

Table A3. Supply-side indicators: Data sources.

Dimension	Indicator	Source	
Context	Energy Prices	IEA Energy Price Taxes	
	Carbon prices	EEX	
	Capacity power plants	IEA Electricity information	
Economic	Transformation efficiency electricity plants	IEA Energy Balances	
	Transformation efficiency CHP	IEA Energy Balances	
	Transformation efficiency heat plants	IEA Energy Balances	
	Distribution efficiency electricity	IEA Energy Balances	
	Distribution efficiency heat	IEA Energy Balances	
	Transformation input	IEA Energy Balances	
	Public energy R&D expenditures	IEA, Energy R&D Expenditures	
	Applied energy technology patents	OECD; EPO database	
Ecological	% of RES in Electricity and Heat supply	IEA Energy Balances	
	CO ₂ emissions	UNFCCC, National Inventory Reports	
	NO _x emissions	UNFCCC, National Inventory Reports	
	SO ₂ emissions	UNFCCC, National Inventory Reports	
	CO ₂ efficiency of Electricity and Heat supply	UNFCCC, National Inventory Reports	
	NO_{x} efficiency of Electricity and Heat supply	UNFCCC, National Inventory Reports	
	SO ₂ efficiency of Electricity and Heat supply	UNFCCC, National Inventory Reports	
Social	Low-wage earners	Eurostat, Structure of Earning Survey	
	Median hourly earnings	Eurostat, Structure of Earning Survey	
	Collective pay agreement	Eurostat, Structure of Earning Survey	
	Temporary contracts	Eurostat, Structure of Earning Survey	
	Incidence rate of fatal accidents at work	Eurostat - European Statistics on accidents at work (ESAW)	
	Flexibility of the work schedule	Eurostat: Labour Force Survey (LFS)	
	Gender pay gap	Eurostat: Labour Force Survey (LFS)	
	Gender employment gap	Eurostat - Structure of Earnings Survey (SES)	

REFERENCES

- 1. UNFCCC. National Inventory Reports. New York (NY, US): UNFCCC; 2019.
- TWI2050—The World in 2050. Transformations to Achieve the Sustainable Development Goals. Laxenburg (Austria): TWI2050; 2018. Available from: <u>http://twi2050.org</u>. Accessed 2020 Feb 7.
- Bierman F, Kanie N, Kim RE. Global governance by goal-setting: the novel approach of the UN Sustainable Development Goals. Curr Opin Environ Sustain. 2017;26-27:26–31. <u>https://doi.org/10.1016/j.cosust.2017.01.010</u>
- 4. Mulholland E, Dimitrova A, Hametner M. SDG Indicators and Monitoring: Systems and Processes at the Global, European, and National Level. Vienna (Austria): ESDN Office; 2018. Report No.: Quarterly Report 48.
- Nilsson M, Griggs D, Visbeck M. Policy: Map the interactions between Sustainable Development Goals. Nature. 2016;534:320-2. doi: 10.1038/534320a
- McCollum DL, Echeverri LG, Busch S, Pachauri S, Parkinson S, Rogelj J, et al. Connecting the sustainable development goals by their energy inter-linkages. Environ Res Lett. 2018;13:033006. doi: 10.1088/1748-9326/aaafe3
- 7. Blanc DL. Towards Integration at Last? The Sustainable Development Goals as a Network of Targets. Sustain Dev. 2015;23:176-87. doi: 10.1002/sd.1582
- 8. Nilsson M, Griggs D, Visbeck M, Ringler A. A draft framework for understanding SDG interactions. Paris (France): International Council for Science; 2016.
- 9. Spangenberg JH. Hot Air or Comprehensive Progress? A Critical Assessment of the SDGs. Sustain Dev. 2017;25:311-21. doi: 10.1002/sd.1657
- Türkeli S. Complexity and the Sustainable Development Goals: A Computational Intelligence Approach to Support Policy Mix Designs. J Sustain Res. 2020;2:e200006. <u>https://doi.org/10.20900/jsr20200006</u>
- 11. Cullen JM, Allwood JM. The efficient use of energy: Tracing the global flow of energy from fuel to service. Energy Policy. 2010;38:75-81.
- Gouveia JP. Projections of energy services demand for residential buildings: Insights from a bottom-up methodology. Energy. 2012;47:430-42. doi: 10.1016/j.energy.2012.09.042
- 13. Haas R, Nakicenovic N, Ajanovic A, Faber T, Kranzl L, Müller A, et al. Towards sustainability of energy systems: A primer on how to apply the concept of energy services to identify necessary trends and policies. Energy Policy. 2008;36:4012-21.
- Köppl A, Kettner C, Kletzan-Slamanig D, Schleicher S, Damm A, Steininger K, et al. Energy Transition in Austria: Designing Mitigation Wedges. Energy Environ. 2014;25:281-304. doi: 10.1260/0958-305X.25.2.281
- Ma L, Allwood JM, Cullen JM, Li Z. The use of energy in China: Tracing the flow of energy from primary source to demand drivers. Energy. 2012;40: 174-88. doi: 10.1016/j.energy.2012.02.013
- Sovacool BK. Conceptualizing urban household energy use: Climbing the "Energy Services Ladder." Energy Policy. 2011;39:1659-68. doi: 10.1016/j.enpol.2010.12.041

- 17. Sovacool BK. Security of energy services and uses within urban households. Current Opinion in Environmental Sustainability. 2011;3:218-24. doi: 10.1016/j.cosust.2011.06.004
- Breuer A, Janetschek H, Malerba D. Translating Sustainable Development Goal (SDG) Interdependencies into Policy Advice. Sustainability. 2019;11:2092. doi: 10.3390/su11072092
- 19. TWI. The world in 2050—Annual Report 2017. Laxenburg (Austria): IIASA; 2017.
- European Commission. Communication from the Commission to the Council and the European Parliament on the review of the Sustainable Development Strategy—A platform for action. Brussels (Belgium): European Commission; 2005. Report No.: /* COM/2005/0658 final */.
- UN Social and Economic Council. Report of the Inter-Agency and Expert Group on Sustainable Development Goal Indicators. New York (NY, US): UN; 2016. Report No.: E/CN.3/2016/2/Rev.1.
- 22. UN. Critical milestones towards coherent, efficient and inclusive follow up and review at the global level Report of the Secretary-General. New York (NY, US): UN; 2016. Report No.: A /70/684.
- 23. UNCSD. Indicators of Sustainable Development: Guidelines and Methodologies. Rio de Janeiro (Brazil): UNCSD; 2001.
- General Assembly of the UN. Transforming our World: The 2030 Agenda for Sustainable Development. New York (NY, US): General Assembly of the UN; 2015. Report No.: Seventieth session Agenda items 15 and 116. Available from: <u>https://sustainabledevelopment.un.org/post2015/transformingourworld</u>. Accessed 2020 Feb 7.
- 25. Bertelsmann Stiftung and Sustainable Development Solutions Network (SDSN). SDG Index & Dashboards A Global Report. Gütersloh (Germany): SDSN; 2016.
- 26. Statistics Austria. STATISTICS BRIEF AGENDA 2030—SDG-INDIKATOREN. Vienna (Austria): Statistics Austria; 2018.
- 27. Schepelmann P, Goossens Y, Makipaa A. Towards Sustainable Development Alternatives to GDP for measuring progress. Wuppertal (Germany): Wuppertal Institute; 2008.
- 28. IEA, IAEA. Indicators for Sustainable Energy Development. Paris (France): IAEA; 2001.
- 29. IAEA, IEA. Energy Indicators for Sustainable Development: Guidelines and Methodologies. Paris (France): IAEA; 2005.
- 30. Streimikiene D. Indicators for sustainable energy development in Lithuania. Nat Resour Forum. 2005;29:322-33. doi: 10.1111/j.1477-8947.2005.00144.x
- 31. Pérez D, López I, Berdellans I. Evaluation of energy policy in Cuba using ISED. Nat Resour Forum. 2005;29:298-307. doi: 10.1111/j.1477-8947.2005.00142.x
- Medina-Ross JA, Mata-Sandoval JC, López-Pérez R. Indicators for sustainable energy development in Mexico. Nat Resour Forum. 2005;29:308-21. doi: 10.1111/j.1477-8947.2005.00143.x

- 33. Davidsdottir B, Basoli DA, Fredericks S, Enterline CL. Measuring sustainable energy development with a three-dimensional index. In: Frontiers in Ecological Economic Theory and Application. Cheltenham (UK): Edward Elgar Publishing; 2007. p. 303-30.
- 34. Ibarrarán Viniegra ME, Davidsdottir B, Gracida Zurita R. Índice de sustentabilidad energética: estimaciones para México. Principios estudios de economía política. 2009;85-100. Spanish.
- 35. Martchamadol J, Kumar S. Thailand's energy security indicators. Renew Sustain Energy Rev. 2012;16:6103-22.
- 36. Martchamadol J, Kumar S. An aggregated energy security performance indicator. Appl Energy. 2013;103:653-70. doi: 10.1016/j.apenergy.2012.10.027
- Martchamadol J, Kumar S. The Aggregated Energy Security Performance Indicator (AESPI) at national and provincial level. Appl Energy. 2014;127:219-38. doi: 10.1016/j.apenergy.2014.04.045
- Portugal-Pereira J, Esteban M. Implications of paradigm shift in Japan's electricity security of supply: A multi-dimensional indicator assessment. Appl Energy. 2014;123:424-34. doi: 10.1016/j.apenergy.2014.01.024
- Sovacool BK, Mukherjee I. Conceptualizing and measuring energy security: A synthesized approach. Energy. 2011;36:5343-55. doi: 10.1016/j.energy.2011.06.043
- National Climate Assessment and Development Advisory Committee. National Climate Indicators System Report. Montana (US): Numerical Terradynamic Simulation Group Publications; 2014. p. 1-157. Available from: <u>https://scholarworks.umt.edu/ntsg_pubs/376</u>. Accessed 2020 Feb 7.
- 41. Germanwatch. The Climate Change Performance Index 2015. Available from: https://germanwatch.org/en/9472. Accessed 2018 Oct 23.
- 42. Bernauer T, Böhmelt T. National climate policies in international comparison: The Climate Change Cooperation Index. Environ Sci Policy. 2013;25:196-206. doi: 10.1016/j.envsci.2012.09.007
- 43. Odyssee. Odyssee database. 2019. Available from: <u>https://www.indicators.odyssee-mure.eu/energy-efficiency-database.html</u>. Accessed 2020 Feb 7.
- 44. European Energy Agency. CO2 emissions from passenger cars. Copenhagen (Denmark): European Energy Agency; 2019.
- 45. IEA. Energy Balances. Paris (France): IEA; 2019.
- 46. IEA. Energy Price Taxes. Paris (France): IEA; 2019.
- 47. IEA. Energy R&D Expenditures. Paris (France): IEA; 2019.
- 48. Eurostat. Household budget survey. Brussels (Belgium): Eurostat; 2019.
- 49. Eurostat. European Statistics on accidents at work (ESAW). Brussels (Belgium): Eurostat; 2019.
- 50. Eurostat. Labour Force Survey. Brussels (Belgium): Eurostat; 2019.
- 51. Eurostat. Structure of Earning Survey. Brussels (Belgium): Eurostat; 2019.
- 52. EU. EU Silc—Community Statistics on Income and Living Conditions. Brussels (Belgium): EU; 2019;
- 53. OECD. EPO database. 2019. Available from: <u>https://stats.oecd.org/</u>. Accessed 2020 Feb 7.

- 54. EEX. European Spot market primary auction prices EUAs. Leipzig (Germany): EEX; 2019.
- 55. Littig B. Lebensführung revisited. Zur Aktualisierung eines Konzepts im Kontext der sozial-ökologischen Transformationsforschung. Berlin (Germany): Rosa-Luxemburg-Stiftung; 2016. German.
- 56. Pimminger I, Wroblewski A. Von geschlechtsdifferenzierten Daten zu Gender- und Gleichstellungsindikatoren. In: Wroblewski A, Kelle U, Reith F, editors. Gleichstellung messbar machen: Grundlagen und Anwendungen von Gender- und Gleichstellungsindikatoren. Wiesbaden (Germany): Springer Fachmedien; 2017. p. 61-79. German. doi: 10.1007/978-3-658-13237-8_4
- 57. Pimminger I. Theoretische Grundlagen zur Operationalisierung von Gleichstellung. In: Wroblewski A, Kelle U, Reith F, editors. Gleichstellung messbar machen: Grundlagen und Anwendungen von Gender- und Gleichstellungsindikatoren. Wiesbaden (Germany): Springer Fachmedien; 2017. p. 39-60. German. doi: 10.1007/978-3-658-13237-8_3
- 58. Röhr U. Genderaspekte des Klimawandels—Ursachen, Auswirkungen, Gestaltungsmacht. Klimawandel, Klimaschutz und Gender. Bonn (Germany): Friedrich-Engelbert-Stiftung; 2008.
- 59. Räty R, Carlsson-Kanyama A. Energy consumption by gender in some European countries. Energy Policy. 2010;38:646-9. Available from: <u>https://ideas.repec.org/a/eee/enepol/v38y2010i1p646-649.html</u>. Accessed 2020 Feb 7.
- 60. Kettner C, Kletzan-Slamanig D, Köppl A, Littig B, Zielinska I. A Cross-Country Comparison of Sustainable Energy Development in Selected EU Members. J Sustain Res. 2019;1:e190017. https://doi.org/10.20900/jsr20190017
- 61. Guijarro F, Poyatos JA. Designing a Sustainable Development Goal Index through a Goal Programming Model: The Case of EU-28 Countries. Sustainability. 2018;10:3167. doi: 10.3390/su10093167
- 62. Guijarro F. A Multicriteria Model for the Assessment of Countries' Environmental Performance. Int J Environ Res Public Health. 2019;16:2868. doi: 10.3390/ijerph16162868
- 63. Biggeri M, Clark DA, Ferrannini A, Mauro V. Tracking the SDGs in an 'integrated' manner: A proposal for a new index to capture synergies and trade-offs between and within goals. World Dev. 2019;122:628-47. doi: 10.1016/j.worlddev.2019.05.022

How to cite this article:

Kettner C, Kletzan-Slamanig D, Köppl A; Littig B, Zielinska I. Monitoring Sustainable Development: Climate and Energy Policy Indicators. J Sustain Res. 2020;2(3):e200027. <u>https://doi.org/10.20900/jsr20200027</u>